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Abstract

In 1978 a powerful and practical public-key scheme
Hadi Otrokwas produced by RSA; there work was ap-
plied using 2 large random odd primes p and q, each
roughly of the same size. El-Kassar and Awad modi-
…ed the RSA public-key encryption scheme from the
domain of natural integers, Z , to two principal ideal
domains, namely the domain of Gaussian integers,
Z [i], and the domain of the rings of polynomials over
…nite …elds, F [x], by extending the arithmetic needed
for the modi…cations to these domains. In this work
we implement the classical and modi…ed RSA cryp-
tosystem to compare and to test their functionality,
realiability and security. To test the security of the
algorithms we implement an attack algorithm to solve
the integer factorization problem. After factorization
is found, the RSA problem could be solved by com-
puting the order ©(n), and then …nding the private
key using the extended Euclidean algorithm for inte-
gers.

1 Introduction

Cryptography is the art or science of keeping mes-
sages secret. People mean di¤erent things when they
talk about cryptography. Children play with toy ci-
phers and secret languages.Strong encryption is the
kind of encryption can be used to protect information
of real value against organized criminals, multina-

tional corporations, and major governments. Strong
encryption used to be only in the military domain;
however, in the information society it has become
one of the central tools for maintaining privacy and
con…dentiality.

Perhaps the most striking development in the
history of cryptography came in 1976 when
Di¢e and Hellman published New Directions in
Cryptography [3]. Their work introduced the con-
cept of public-key cryptography and provided a new
method for key exchange. Although the authors had
no practical realization of a public-key encryption
scheme at the time, the idea was clear and it gen-
erated extensive interests and activities in the world
of cryptography. One of the powerful and practical
public-key schemes was produced by Rivest-Shamir-
Adleman (RSA) in 1978 [8].

El-Kassar and Awad [1] modi…ed the RSA public-
key encryption schemes from the domain of natural
integers, Z , to two principal ideal domains, namely
the domain of Gaussian integers, Z [i], and the do-
main of the rings of polynomials over …nite …elds,
F [x], by extending the arithmetic needed for the
modi…cations to these domains.

In this paper, we compare and evaluate the clas-
sical and modi…ed RSA algorithms. We investigate
the issues of complexity, e¢ciency and reliability by
running the programs with di¤erent sets of data. The
attack algorithm consists of subroutines used to crack
encrypted messages. This is done by applying cer-
tain mathematical concepts to …nd the private key
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of the encrypted message. After …nding the key, it
will be easy to decrypt the message. A study will be
done using the results of running the attack algorithm
to compare the security of the di¤erent classical and
modi…ed cryptographic algorithms.

The rest of the paper is organized as follows: sec-
tion 2 describes the classical technique of RSA cryp-
tosystem. Then, we present the modi…cations done
on RSA encryption scheme. In section 3, we deal
with the attack algorithm. In section 4, a testing
procedure is used to evaluate the classical and modi-
…ed algorithms. Also, attack programs is run to test
the complexity, e¢ciency and reliability of the dif-
ferent modi…ed algorithms and compare them to the
classical one. A conclusion is drawn in section 5.

2 Classical and Modi…ed RSA

Public-Key Cryptosystems

2.1 Classical RSA Encryption Scheme

In RSA public-key encryption scheme, entity A gen-
erates the public-key by …rst generating two large
random odd primes p and q, each roughly of the same
size, and computing the modulus n = pq and the or-
der Á(n) = (p ¡ 1)(q ¡ 1) [6]. Then, entity A selects
the encryption exponent e to be any random inte-
ger in the interval (1, Á(n)) relatively prime to Á(n).
Using the extended Euclidean algorithm for integers,
entity A …nds the decryption exponent d which is the
unique integer (1; Á(n)) relatively prime to Á(n) such
that ed = 1 in Zn, i.e., d is the unique inverse of e in
Zn. Hence, the public-key is the pair (n; e); and A0s
private-key is the triplet

(p; q; d):

To encrypt the message m in the complete residue
system modulo n, Zn, entity B …rst obtains A’s
public-key (n, e). Then, it computes the ciphertext
c 2 Zn such that

c ´ me(mod n)

and sends it to entity A.

Now, to encrypt c, i.e. to recover the plaintext m
from the sent ciphertext c, entity A uses the private-
key d to compute

m = cd(mod n)

which is the original message.
In order to be sure of the strengthness of the above

scheme, we should mathematically prove that the real
message m should be recovered by decrypting c using
the decryption algorithm.

Algorithm 1 RSA Public Key Cryptography:

1. Find two large primes p and q and compute their
product n = pq.

2. Find an integer d that is co-prime to (p¡1)(q¡1).

3. Compute e from ed = 1mod(p ¡ 1)(q ¡ 1).

4. Broadcast the public key, that is, the pair of
numbers (e; n).

5. Represent the message to be transmitted, a, say
as a sequence of integers fag each in the range 1
to n.

6. Encrypt each message a using the public key by
applying the rule c ´ me(mod n).

7. The receiver decrypts the message using the rule
m = cd(mod n).

2.2 RSA Cryptosystem in the Domain
of Gaussian Integers, Z[i]

In RSA public-key scheme, entity A generates the
public-key by …rst generating two large random Gaus-
sian primes ¯ and °, each roughly the same size
[5]. Sencondly, entity A computes ´ = ¯° and
Á(´) = Á(¯)Á(°) = (¯2 ¡ 1)(°2 ¡ 1). It selects a
random integer e such that 1 < e < Á(´) and e is
relatively prime to Á(´). Then, entity A …nds the
unique integer d such that 1 < d < Á(´) and d is
relatively prime to Á(´). A’s public-key is

(´; e)
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and A’s private-key is

(¯; °; d).

To encrypt the message m chosen from the complete
residue system modulo ´, G´, entity B …rst obtains
A’s public-key (´; e) then computes the ciphertext
c ´ me(mod ´) and send it to entity A. To decrypt
the ciphertext c sent by B, A uses the private-key d
to recover the plaintext m ´ cd(mod ´).

The following provides three algorithms for the de-
scription of the RSA public-key encryption scheme
over the domain of Gaussian integers.

Algorithm 2 (Key Generation for the RSA Gaus-
sian Public-Key Encryption)

The following algorithm shows how entity A cre-
ates an RSA Gaussian public-key and a correspond-
ing private-key. Entity A should do the fol lowing:

1. Generate two distinct large random Gaussian
primes ¯ and ° , each roughly the same size.

2. Compute ´ = ¯° and Á(´).

3. Select a random integer e such that 1 < e < Á(´)
and (e; Á(´)) = 1.

4. Use the extended Euclidean algorithm over the
domain of Gaussian integers to compute the
unique inverse d of e such that ed ´ 1(mod Á(´)).

5. A0s public-key is (´, e).

6. A0s private-key is (¯, ° , d).

Algorithm 3 (RSA Gaussian Public-Key Encryp-
tion)

The following algorithm shows how entity B en-
crypts the message m in the complete residue system
modulo a Gaussian integer ´. Entity B should do the
following:

1. Obtain A’s authentic public-key (´, e).

2. Represent the message as an integer m in the
complete residue system modulo the Gaussian
integer ´, G´ .

3. Compute c = me(mod ´).

4. Send the ciphertext c to A.

Algorithm 4 (RSA Gaussian Public-Key Decryp-
tion)

The following algorithm shows how entity A recov-
ers the real message m from the ciphertext c. Entity
A should do the following:

1. Receive the ciphertext c.

2. Use the private-key d to recover m ´ cd(mod ´).

2.3 RSA Cryptosystem over Quotient
Rings of Polynomials over Finite
Fields

Given a prime number p and a polynomial f (x) of
degree n in the …nite …eld Zp [x] as a product of
two distinct irreducible polynomials in Zp[x], that is
f (x) = h(x)g(x), where h(x) is of degree s and g(x)
is of degree r . The ring Zp[x]= hf (x)i is …nite of order
pn and from chapter two we have that,

Zp[x]= hf (x)i »= Zp[x]

hf (x)i © Zp[x]

hg(x)i .

Also, we obtain that,

U (Zp[x]= hf (x)i »= U

µ
Zp[x]

hf (x)i

¶
£

µ
Zp[x]

hg(x)i

¶
.

Since each of h(x) and g(x) is irreducible, the quo-

tient rings
Zp[x]

hh(x)i and
Zp[x]

hg(x)i is a …nite …eld of or-

der ps and pr respectively. Also, the groups of units
Z¤

p[x]

hh(x)i
and

Z¤
p[x]

hg(x)i
are cyclic and of order Á(h(x)) =

ps ¡ 1 and Á(g(x)) = pr ¡ 1 respectively [4].
Now, given a positive integer e such that

(e; Á(f (x))) = 1 and a polynomial m(x), …nd a poly-
nomial c(x) such that c(x) ´ m(x)e(modf (x)) in
Zp[x]. The polynomials h(x) and g(x) should be se-
lected so that factoring f (x) = h(x)g(x) is computa-
tionally infeasible.

The following provides three algorithms for the de-
scription of the RSA public-key encryption scheme
over polynomials.
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Algorithm 5 (Key Generation for the RSA Public-
Key Encryption over Polynomials)

The following algorithm shows how entity A creates
an RSA public-key and a corresponding private-key.
Entity A should do the following:

1. Generate a random odd prime integer p.

2. Generate two irreducible polynomial h(x) and
g(x) in Zp[x].

3. Reduce the polynomial f (x) = h(x)g(x) in Zp[x].
Then compute the order of Z¤

p[x]= hf (x)i which is
equal to Á(f (x)) = (ps ¡ 1)(pr ¡ 1).

4. Select a random integer e such that 1 < e <
Á(f (x)) and (e;Á(f(x))) = 1.

5. Use the Euclidean algorithm for integers to
…nd the unique inverse d of e with respect to
Á(f (x)) such that 1 < d < Á(f (x)) and e:d ´
1(mod Á(f (x))) in Zp[x].

6. A’s public-key is (p, f (x), e), A’s private-key is
(p, d, g(x), h(x)).

Note that e and d should be chosen to be integers
since they will be used as powers as we will see next.

Algorithm 6 (RSA public-key Encryption over
Polynomials)

The following algorithm shows how entity B en-
crypts a message m(x) for A. Entity B should do the
following:

1. Receive A’s authentic public-key (p, f (x), e).

2. Represent the message as a polynomial m(x)
in the complete residue system modulo f (x) in
Zp [x].

3. Compute the polynomial c(x) ´
m(x)e(mod f (x)) in Zp[x].

4. Send the ciphertext c(x) to A.

Algorithm 7 (RSA Public-Key Decryption over
Polynomials)

The following algorithm shows how entity A de-
crypts the sent ciphertext c(x) and recover the real
message m(x). Entity A should do the following:

1. Receive the ciphertext c(x) from B.

2. Use the private-key d to recover m(x) by reducing
c(x)d (modf (x)) in Zp[x].

3 RSA Public-Key Scheme At-
tack

In order to attack any protocol that uses the RSA
public key encryption scheme, we should …rst solve
the factorization problem in order to …nd the private
key. Recall that the intractability of both the integer
factorization problem and the RSA problem forms
the basis for the security of the RSA public-key en-
cryption scheme.

Hence, to attack any protocol that uses the RSA
public-key encryption scheme, we should …rst solve
the integer factorization problem as described in RSA
public-key encryption attack. After factorization of
integer n, the RSA problem could be solved by com-
puting the order Á(n), and then …nding the integer d
using the extended Euclidean algorithm for integers.
Once d is found, the adversary can decrypt any ci-
phertext intended for A. On the other hand, if an ad-
versary could somehow compute d, then he/she could
subsequently factor n e¢ciently as follows: First note
that since ed ´ 1(modÁ(n)), there is an integer k
such that ed ¡ 1 = kÁ(n). Hence, by the fact that
aed¡1 ´ 1(mod n) for all a 2 Z¤

n (Eulers theorem).
Let ed ¡ 1 = 2st, where t is an odd integer. Then it
can be shown that a2s¡1t is not congruent to either
§1 modulo n for at least half of all integers a 2 Z¤

n.
If a is such an integer, then gcd(a2s¡1t ¡ 1; n) is a
non-trivial factor of n.

The above discussion shows that the RSA problem
and the integer factorization problem are computa-
tionally equivalent.

3.0.1 Example:

How to …nd the private key in the case of RSA?

Solution: Assume that the public key is:
(n= 8038438974502939,e= 180977512554819). We

have to …nd the private key. Since n is the multipli-
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cation of p and q (where p and q are both primes),
so we have to …nd p and q using Mathmatica.

Divisors[8038438974502939]
{1, 89657297, 89657387, 8038438974502939}
p=89657297 and q=89657387
Now, we have to …nd Á(n)= (p-1)(q-1)=(89657297-

1)(89657387-1)=8038438795188256.
After, …nding Á(n) we have to …nd d which is the

inverse of e using Mathmatica.
PowerMod[180977512554819, -1,

8038438795188256] = 2500998620710731=d
Since d is found the private key will be

(89657297,89657387,2500998620710731).

4 Testing and Evaluation

In this section, we compare and evaluate the di¤er-
ent classical and modi…ed cryptosystems by showing
the implementation of the cryptosystems’ algorithms
with their running results. Also, we test the security
of the algorithms by implementing di¤erent attack al-
gorithms to crack the encrypted messages. All this is
done using Mathematica 4.0 as a programming lan-
guage and a PIV Dell computer with 2.4 GHZ CPU,
40 GByte hard-disk, and 512 MB DDRAM.

4.1 RSA based Algorithms

Using Mathmatica 4.0 functions and an additional
abstract algebra library, we have written programs
for the following algorithms:

1. Classical RSA.

2. RSA with Gaussian numbers.

3. RSA with irreducible polynomials.

After running the programs, it was clear that these
programs have applied the RSA cryptosystem in the
correct way. All the programs have generated a pub-
lic and private key with di¤erent mathematical con-
cepts. Then a message is encrypted using the encryp-
tion scheme and is sent encrypted to a decryption
procedure which returned the original message.

Comparing these algorithms with each other, we
conclude the following:

1. All programs are reliable; they can encrypt and
decrypt any message.

2. The complexity for the three programs is the
complexity of …nding the inverse of a number with
respect to ©(n). Thus, using the classical and Gaus-
sian algorithms, it is easy to …nd the inverse of a
number and it does not take much time. However,
in the case of irreducible polynomial algorithm, we
implemented a special sub routine to …nd the inverse
of a polynomial. Although this subroutine helped us
to apply the irreducible polynomial algorithm, but it
is ine¢cient because it needs a lot of time specially
when p is very large and when the polynomial order
increases.

3. We faced a problem during the execution of
the irreducible polynomial algorithms. This is due
to the di¢culty of generating a random irreducible
polynomial according to a prime number p.

4.2 Attack Algorithm

In order to attack any protocol that uses the RSA
public key encryption scheme, we should …rst solve
the factorization problem in order to …nd the private
key. To test the security of the algorithms, we im-
plemented attack schemes and applied them on the
classical and modi…ed cryptosystem algorithms. Af-
ter running these attack algorithms, we observed the
following:

1. All the attack programs are reliable so that they
can hack an encrypted message by …nding the private
key.

2. Attacking the RSA algorithm using the ex-
tended Euclidean algorithm for integers is easy if
we are dealing with small prime numbers. However,
when it comes to 100-digit prime numbers or higher,
it needs about many computers working in parallel
processing to compute the prime factorization of the
multiplication of two 100-digit prime numbers.

3. Attacking the RSA polynomial algorithm is
much more secure than the classical one since ©(n)
will be in the form (pt-1) (pr-1). Where t and r are
the power of the two irreducible polynomials.
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5 Conclusion

In this work, we presented the classic RSA cryptosys-
tem and two modi…cations to it, namely, the RSA
cryptosystem in Zn, in the domain of Gaussian inte-
gers, Z [i] and over quotient rings of polynomials over
…nite …elds. We implemented these algorithms and
tested their e¢ciency, reliability, and security. The
results obtained showed that all the algorithms ap-
plied the RSA cryptosystem correctly and generated
public and private key using di¤erent mathematical
concepts. Messages were then encrypted using the
encryption scheme and were sent in encrypted form
to a decryption procedure which returned the original
messages.

We also built attack scenarios directly aimed at
solving the factorization problem. We modi…ed the
RSA attack algorithm to handle the modi…ed algo-
rithms. We observed that the polynomial domain
algorithm was the most challenging to attack due to
mathematical complexity.

As for future work, we plan to compare and eval-
uate the e¢ciency of the modi…ed algorithms using
very large numbers by using parallel computing tech-
niques. We plan to run the programs in parallel on
many computers and split the complex mathemati-
cal calculations between these computers. We plan
to write a function that is capable of …nding any ran-
dom irreducible equation with respect to a speci…c
prime number p. We also plan to apply the modi…ed
algorithms in many …elds such as database, commu-
nications and network security.
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